Robust Factor Analysis Using the Multivariate t-Distribution
نویسندگان
چکیده
Factor analysis is a standard method for multivariate analysis. The sampling model in the most popular factor analysis is Gaussian and has thus often been criticized for its lack of robustness. A simple robust extension of the Gaussian factor analysis model is obtained by replacing the multivariate Gaussian distribution with a multivariate t-distribution. We develop computational methods for both maximum likelihood estimation and Bayesian estimation of the factor analysis model. The proposed methods include the ECME and PX-EM algorithms for maximum likelihood estimation and Gibbs sampling methods for Bayesian inference. Numerical examples show that use of multivariate t-distribution improves the robustness for the parameter estimation in factor analysis.
منابع مشابه
Robust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models
Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...
متن کاملApplication of continuous restricted Boltzmann machine to detect multivariate anomalies from stream sediment geochemical data, Korit, East of Iran
Anomaly separation using stream sediment geochemical data has an essential role in regional exploration. Many different techniques have been proposed to distinguish anomalous from study area. In this research, a continuous restricted Boltzmann machine (CRBM), which is a generative stochastic artificial neural network, was used to recognize the mineral potential area in Korit 1:100000 sheet, loc...
متن کاملCharacterization of rare earth elements by coupling multivariate analysis, factor analysis, and geostatistical simulation; case-study of Gazestan deposit, central Iran
The traditional approaches of modeling and estimation of highly skewed deposits have led to incorrect evaluations, creating challenges and risks in resource management. The low concentration of the rare earth element (REE) deposits, on one hand, and their strategic importance, on the other, enhances the necessity of multivariate modeling of these deposits. The wide variations of the grades and ...
متن کاملThe most important climatic factors affecting distribution of Zygophyllum atriplicoides in semi-arid region of Iran (Case Study: Isfahan Province)
Zygophyllum atriplicoides is one of the important species of Iran rangelands that has special importance owing to some properties like high distribution rate, coverage percentage, density, and plant biomass that make it possible to supply a part of forage needed by livestock during spring and winter as well as to avoid soil degradation against water and wind erosions. This research tries to stu...
متن کاملEvaluation of Groundwater Chemistry of a Central Kerala River Basin, India using Multivariate Analysis
Statistical processing of data was necessary to arrive at a reasonable conclusion regarding the chemical behavior of groundwater in a river basin. Multivariate analysis was done to elucidate the groundwater chemistry of a Central Kerala River basin. Hydrochemical parameters like EC, pH, TDS, TH, Ca, Mg, Na, K, Cl, F, HCO 3 +CO 3 , SO 4 , total Fe were estimated in the pre- monsoon and post-mons...
متن کامل